Нововоронежская АЭС-2. Энергоблок № 1 Система автоматизированного контроля остаточного ресурса (САКОР)

Программное обеспечение контроля размахов напряжений и расчета квазистатических напряжений для расчета вибронагруженности

(ПО «ДИАНА_S 1200»)

РУКОВОДСТВО СИСТЕМНОГО ПРОГРАММИСТА

Листов 17

НВВАЭС Блок 1

Руководство системного программиста

Изм.:

Страница 2/17

СОДЕРЖАНИЕ

1	Введение			
2	Общие сведения			
	2.1	Назначение программы	4	
	2.2	Сведения о технических и программных средствах	5	
	2.3	Подготовка исходных данных	6	
3	Уста	ановка и работа с ПО «ДИАНА_S 1200»	8	
	3.1	Требования для штатного функционирования ПО«ДИАНА_S 1200»	8	
	3.2	Размещение ПО «ДИАНА_S 1200»	8	
	3.3	Вывод результатов расчета	9	
4	Вып	олнение ПО «ДИАНА_S 1200»	11	
П	ерече	нь сокращений	14	
Cı	писок	с литературы	15	
C	сылоч	ные нормативные документы	16	

НВВАЭС Блок 1	Руководство системного программиста	Изм.:	Страница 3/17
DJIOK 1			

1 ВВЕДЕНИЕ

- 1.1.1 Программное обеспечение (ПО) «ДИАНА_S 1200» поставляется на Нововоронежскую АЭС-2 для использования в составе системы автоматизированного контроля остаточного ресурса (САКОР) в соответствии с требованиями /1/ и устанавливается организацией-разработчиком на вычислительный комплекс (ВК) САКОР-392М.
- 1.1.2 В настоящем руководстве приведены основные сведения, необходимые для эксплуатации ПО «ДИАНА_S 1200». Рассмотрено назначение и функции программы, приведены сведения о ее настройке, а также порядок вызова и передачи входных данных, а также получения выходных данных для системного программиста.

НВВАЭС Блок 1	Руководство системного программиста	Изм.:	Страница 4/17
DJIOK 1			

2 ОБЩИЕ СВЕДЕНИЯ

2.1 Назначение программы

- 2.1.1 Диагностическое ПО «ДИАНА_S 1200» поставляется на энергоблок № 1 Нововоронежской АЭС-2 для использования в составе системы автоматизированного контроля остаточного ресурса и устанавливается организацией-разработчиком на две параллельные вычислительные машины ВК САКОР-392М. ПО «ДИАНА_S 1200» предназначено для своевременного обнаружения недопустимых общих напряжений по категориям (σ)_{RK} с выдачей диагностических параметров. Данная функция выполняется в автоматическом «on-line» режиме. ПО «ДИАНА_S 1200» совместно с базой данных контроля размахов напряжений в режиме «on-line» выполняет:
- расчет общих напряжений с учетом реальных перемещений и стратификации в в контрольных сечениях ГЦТ и СТ;
 - проверку условий статической прочности по категориям напряжений (σ)_{RK};
- автоматизированное ведение протоколов и баз данных для последующего экспертного анализа.

ПО «ДИАНА_S 1200» в «on-line» режиме должно обеспечивать расчет величины размахов общих кинематических и температурных напряжений (σ)RK в контрольных сечениях ГЦТ и СТ при их температурной компенсации с учетом фактически измеренных перемещений оборудования ГЦК и стратификации теплоносителя в ГЦТ и СТ в следующих сечениях:

- на патрубке реактора горячей нитки ГЦТ 1-4;
- на патрубке парогенераторов (ПГ) 1-4 горячей нитки ГЦТ 1-4;
- на патрубке реактора холодной нитки ГЦТ 1-4;
- на патрубке главного циркуляционного насоса (ГЦН) 1-4 холодной нитки ГЦТ
 1-4 со стороны реактора;
- на патрубке ПГ 1-4 холодной нитки ГЦТ 1-4.
- на патрубке КД и на патрубке горячей нитки ГЦТ 4 на СТ.
- 2.2 ПО «ДИАНА_S 1200» совместно с базой данных для расчета квазистатических напряжений для расчета вибронагруженности в режиме «on-line» выполняет расчет местных квазистатических напряжений в наплавке ГЦТ и СТ в четырех точках по сечению трубопровода (через 90 градусов). В случае превышения порогов

НВВАЭС Блок 1	Руководство системного программиста	Изм.:	Страница 5/17
Блок 1			

вибрации данные квазистатические напряжения должны быть учтены при расчете накопленного усталостного повреждения с учетом многоцикловой усталости.

2.2 Сведения о технических и программных средствах

2.2.1 ПО «ДИАНА_S 1200» для энергоблока № 1 Нововоронежской АЭС устанавливается на два системных блока (СБ) ВК САКОР-392М. При необходимости выходные параметры, в том числе графические, отображаются на пульте ВК САКОР-392М.

ВК САКОР-392М выполнен на базе устройства вычислительного УВ-03Р, в виде шкафа компоновочного, включающего три системных блока в промышленном исполнении, 2 источника бесперебойного питания, коммутатор информационной сети, и предустановленным системным программным обеспечением на базе CentOS 5.4. Пульт ВК САКОР на базе РМ-09, выполнен в виде монтажного стола, на котором размещаются индустриальный сейсмо-виброустойчивый монитор, клавиатура, манипулятор мышь. Основные технические характеристики УВ и РМ, приведены в таблице 2.1.

Таблица 2.1 - Основные технические характеристики УВ-03Р и РМ-09

Характеристика устройств	Значение
Количество системных блоков, шт.	2
Количество процессоров (Intel) в системном блоке, шт.	2
Количество ядер процессора, шт	4, не менее
Частота процессора, ГГц	2,4, не менее
Объем кэш-памяти, Мбайт	12,0, не менее
Объем ОЗУ, Гбайт	6,0, не менее
Объем видео памяти, Мбайт	32, не менее
Общее количество НЖМД, шт.	4, не менее
T. DAID	- RAID 10
– Тип RAID-массива	– (зеркальный)
– Объем памяти на одном НЖМД, Гбайт	300, не менее
– Объем памяти в RAID-массиве, Гбайт	- 600 ,не менее
Устройство считывания/записи накопителей DVD-RW	1, не менее
Количество внешних информационных линий связи 100Base-TX, шт	4, не менее

НВВАЭС Блок 1	Руководство системного программиста	Изм.:	Страница 6/17
Влок 1			

Мощность источника бесперебойного питания, В•А (Вт)	3000 (2100)
Время автономной работы от источника бесперебойного питания, мин	10, не менее
Максимальное поддерживаемое разрешение экрана монитора (ширина x высота), точек	1280х1024, не менее
Размер экрана по диагонали, дюйм	19, не менее
Цветовая палитра видеоизображения (True color), бит	24, не менее
Внешние интерфейсы системного блока, шт.:	
USB 2.0	5, не менее
– - видео (SVGA)	1
– - клавиатура, PS/2	1
– - манипулятор («мышь»), PS/2	1

УВ имеет возможность удаленного конфигурирования с использованием встроенных технологических каналов.

Размещение диагностического ПО «ДИАНА_S 1200» на ВК САКОР-392М проводится организацией-разработчиком при установке программного обеспечения «on-line» приема передачи информации от СВБУ.

В состав поставки САКОР-392М входит персональный компьютер (частота процессора – не менее 2,66 ГГц, ОЗУ - 2х2 Гбайт, объем жесткого диска - 500 Гбайт), оснащенный ЖК-монитором 23", лазерным цветным принтером А4, клавиатурой, манипулятором («мышь»).

2.3 Подготовка исходных данных

- 2.3.1 Общая структура организации сбора и передачи информации на ВК САКОР-392М в «on-line» режиме, необходимой для выполнения ПО «ДИАНА_S 1200» своих функций представлена на рисунке 2.1. На схеме стрелками указаны кабели коммуникационной связи между системами.
- 2.3.2 Общая структура организации передачи информации на ВК СКТП ПГ и ВК САКОР-392М и размещение существующего ПО представлено на рисунке 2.1.

НВВАЭС Блок 1	Руководство системного программиста	Изм.:	Страница 7/17
DJIOK 1			

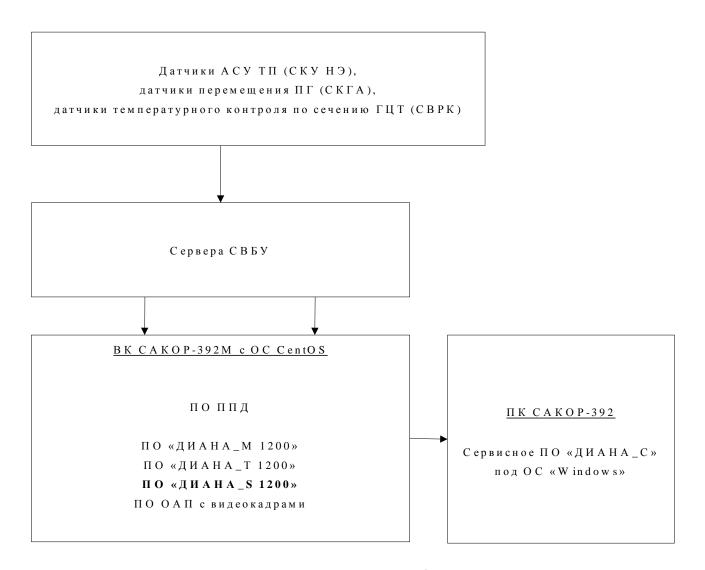


Рисунок 2.1 - Принципиальная схема передачи информации на ВК САКОР-392М

Сформированный пакет данных в «on-line» режиме передается в ВК САКОР-392М с циклом 1 секунда. ПО приема-передачи данных распределяет их по расчетным модулям, в том числе передает данные в ПО «ДИАНА_М 1200» и ПО «ДИАНА_Т 1200» получает от него результаты расчета. Эти данные являются входными для ПО «ДИАНА_S 1200». ПО приема-передачи информации передает данные в ПО «ДИАНА_S 1200» и получает от него результаты расчета для представления на видеокадрах на ПК БЩУ. Размещение диагностического ПО «ДИАНА_S 1200» на ВК САКОР-392М проводится организацией-разработчиком при установке программного обеспечения «on-line» приема передачи данных от УИИ и ЛВС.

НВВАЭС Блок 1	Руководство системного программиста	Изм.:	Страница 8/17
DJIOK 1			

3 УСТАНОВКА И РАБОТА С ПО «ДИАНА_S 1200»

3.1 Требования для штатного функционирования ПО«ДИАНА_S 1200»

Нормальное функционирование ПО «ДИАНА_S 1200» РУ В-320 обеспечивается при выполнении следующих условий:

- —исправное состояние технических средств ВК САКОР-392М;
- наличие связи ВК САКОР-392М с СВБУ энергоблока;
- работоспособность ПО приема-передачи данных, ПО «ДИАНА_М 1200» и ПО «ДИАНА_Т 1200», информацию от которых по общему перечню нагрузок на трубопроводы ГЦТ и СТ получает ПО «ДИАНА S 1200»;
- надлежащая эксплуатация ПО «ДИАНА_S 1200» в соответствии с требованиями технической документации.

3.2 Размещение ПО «ДИАНА_S 1200»

- 3.2.1 Для начала работы с ПО _ДИАНА_S 1200» необходимо под пользователем **svrk** скопировать содержимое папки Diana_S с установочного CD на жесткий диск BK CAKOP-392M, например, в папку /home/sacor/diana
- 3.2.2 **Diana** каталог, содержащий исполняемые и настроечные файлы (базы данных), файлы протоколов расчетов и log-файлы с информацией о ходе работе программы. Настроечные файлы предназначены для привязки ПО «ДИАНА_S 1200» к конфигурации оборудования РУ проекта В-392М энергоблока № 1 Нововоронежской АЭС-2.
- 3.2.3 В каталоге Diana содержатся файл запуска ПО run.sh и следующие подкаталоги:
- **input** используется для работы версии с эмулятором входных данных из файла структуры типа 1 с именем, имеющим следующий формат:

StationN_YYYY_MM_DD_M(T)

Station – идентификатор станции;

N – номер блока;

НВВАЭС Блок 1 Руководство системного программиста Изм.: Страница 9/17

ҮҮҮҮ – год, **ММ** – месяц, **DD** – день проведения расчета.

Расширение имени файла – stress.

Например, для обработки информации по энергоблоку № 2 Нововоронежской АЭС-2 за 2 апреля 2021г. имя файла будет nvv1_2021_04_02_M(T).stress

- **bin** содержит исполняемые файлы ПО «ДИАНА_S 1200»;
- **output** содержит выходные файлы с результатами расчетов ПО «ДИАНА_S 1200»;
- logs содержит тестовые файлы с информацией о работе программы;

3.3 Вывод результатов расчета

- 3.3.1 По результатам работы ПО «ДИАНА_S 1200» за один день в директории *output* поддиректориях типа *nvv1_ууу_mm* создаются следующие выходные файлы:
 - текстовый файл протокола расчета с отклонениями по задачам контроля размахов напряжений;
 - текстовый файл протокола расчета квазистатических напряжений для вибронагруженности.

Имя файла протокола имеет следующий формат:

StationN_YYYY_MM_DD_DianaS

Station – идентификатор станции;

N – номер блока;

ҮҮҮҮ – год, **ММ** – месяц, **DD** – день проведения расчета;

Расширение имени файла – dia.

Например, после обработки информации по энергоблоку № 1 Нововоронежской АЭС-2 за 18 августа 2018 г. имя файла будет nvv1_2021_08_18_DianaS.dia. Файлы содержат диагностические сообщения и значения критериальных параметров по задачам. Пример файла представлен на рисунке 3.1.

В директории logs содержатся текстовые протоколы процесса проведения расчета.

НВВАЭС Блок 1 Руководство системного программиста Изм.: Страница 10/17

Отчет по задачам расчета размахов напряжений:					
Зарегистрированные отклонения:					
идентификатор сообщения описание					
Зарегистрированные отклонения:					
идентификатор сообщения время регистрации максимальное значение					
10JEC11SB901_XQ01 2018.08.18_07:35:08 107.271					
10JEC11SR901_XQ01 2018.08.18_10:05:55 152.103					
10JEC11SB902_XQ01 2018.08.18_00:36:07 46.1418					
10JEC11SR902_XQ01 2018.08.18_00:36:07 92.0175					
10JEC21SB901_XQ01 2018.08.18_18:29:02 113.672					
10JEC21SR901_XQ01 2018.08.18_18:29:02 158.534					
·					
10JEC32SR901_XQ01 2018.08.18_11:15:19 77.1606					
10JEC32SB902_XQ01 2018.08.18_06:50:59 31.3134					
10JEC32SR902_XQ01 2018.08.18_11:15:19 76.2076					
10JEC32SB903_XQ01 2018.08.18_06:50:58 115.964					
10JEC32SR903_XQ01 2018.08.18_07:57:44 160.831					
10JEC42SB901_XQ01 2018.08.18_00:36:26 32.1997					
10JEC42SR901_XQ01 2018.08.18_00:35:58 77.0809					
10JEC42SB902_XQ01 2018.08.18_07:12:58 31.6566					
10JEC42SR902_XQ01 2018.08.18_07:57:57 76.5437					
10JEC42SB903_XQ01 2018.08.18_07:58:21 115.651					
10JEC42SR903_XQ01 2018.08.18_07:58:21 160.527					
10JEF10SB901_XQ01 2018.08.18_22:01:19 38.013					
10JEF10SR901_XQ01 2018.08.18_22:01:24 68.7898					
10JEF10SB902_XQ01 2018.08.18_01:32:56 132.473					
10JEF10SR902_XQ01 2018.08.18_01:25:28 163.438					

Рисунок 3.1 – Пример вывода диагностических сообщений ПО «ДИАНА_S 1200»

НВВАЭС Блок 1	Руководство системного программиста	Изм.:	Страница 11/17
DJIOK 1			

4 ВЫПОЛНЕНИЕ ПО «ДИАНА_S 1200»

4.1.1 Для запуска ПО «ДИАНА S 1200» необходимо выполнить команду:

/run.sh S standalone (emulation) (ключ emulation – для проведения расчетов в режиме эмуляции (обработка файлов из директории input); ключ standalone - для проведения расчетов с ПО приема-передачи данных).

ПО приема-передачи данных вызывает ПО «ДИАНА_S 1200» для расчета размахов напряжений, передавая ему необходимые параметры в режиме «on-line» с частотой 1 раз в секунду. Расчетный модуль ПО «ДИАНА_S 1200» принимает входные данные через механизм очередей POSIX (mqueue). Для передачи данных, необходимо открыть очередь следующим образом:

```
#define MAX MSG NUM 10
#define INPUT_MQ_NAME "/steamgen_input_mq_s"
struct mq attr attr = {0};
attr.mq flags = 0;
attr.mq_maxmsg = MAX_MSG_NUM;
attr.mq_msgsize = sizeof(struct CDianaInput);
attr.mq curmsgs = 0;
fd = mq open(INPUT MQ NAME, O WRONLY | O CREAT, 0777, &attr);
и передать данные в расчетный модуль:
CDianaInput rInputData;
//заполение полей rInputData
//передача данных в расчетный модуль
write_to_mq(fd, &rInputData);
#define NUMBER OF STEAM GENERATORS 4
#define NUMBER OF PRESSURE 1 SENSORS 1
#define NUMBER_OF_MOVEMENT_SENSOR_ROWS_SG 2
#define NUMBER OF OUPUTS SG (NUMBER OF STEAM GENERATORS)
#define NUMBER_OF_OUTPUTS_ROW (NUMBER_OF_OUPUTS_SG * NUMBER_OF_MOVEMENT_SENSOR_ROWS_SG)
struct CDianaInput {
      struct timespec m CurrentTime;
      // Поперечное отклонение горячей нитки от оси ГЦТ
      double m_LateralDisplacement[NUMBER_OF_OUTPUTS_ROW];
      //Продольное подщемление горячей нитки вдоль оси ГЦТ
      double m_LongitudinalSqueezing[NUMBER_OF_OUTPUTS_ROW];
      // Угол поворота ПГ
      double m_AngleOfRotation[NUMBER_OF_OUTPUTS_ROW];
      // Поперечное перемещение холодного патрубка ПГ
      double m_Dxd[NUMBER_OF_OUTPUTS_ROW];
      // Продольное перемещение холодного патрубка ПГ
      double m_Dyd[NUMBER_OF_OUTPUTS_ROW];
```

Изм.:

Страница 12/17

```
// Температура сечения горячей нитки ГЦТ
      double m AbsTemperatureHot[NUMBER OF OUPUTS SG];
      // Температура сечения холодной нитки ГЦТ
      double m AbsTemperatureCold[NUMBER OF OUPUTS SG];
      // Это данные из входного потока
      // Давление над активной зоной (на выходе из СКР)
      double m_Pressure_1[NUMBER_OF_PRESSURE_1_SENSORS];
      // Температурный момент горячей нитки ГЦТ
      double m_StratCurHot[NUMBER_OF_OUPUTS_SG];
      // Температурный момент холодной нитки ГЦТ
      double m_StratCurCold[NUMBER_OF_OUPUTS_SG];
      // Температура поверхности нижней части соединительного трубопровода на горизонталь-
ном участке у КД
      double m_TemperatureConnectorPipeBottom[1];
      // Температура поверхности верхней части соединительного трубопровода на горизонталь-
ном участке у КД
      double m TemperatureConnectorPipeTop[1];
      // Температурный момент соединительного трубопровода на горизонтальном участке у КД
(таблица 11)
      double m StratCurConPipeHorz[1];
      //Температура соединительного трубопровода у КД (верх)
      double m TemperatureCoolantTop;
      //Температура соединительного трубопровода у ГЦТ (низ)
      double m TemperatureCoolantBottom;
};
```

4.1.2 ПО «ДИАНА_S 1200» совместно базой данных контроля размахов напряжений передает в ПО приема-передачи данных результаты расчетов в режиме "on-line" с частотой 1 раз в секунду для представления на видеокадрах реальных перемещений оборудования РУ. ПО «ДИАНА_S 1200» передает выходные данные через механизм очередей POSIX (mqueue).

```
struct mq_attr attr = {0};
attr.mq_flags = 0;
attr.mq_maxmsg = MAX_MSG_NUM;
attr.mq_msgsize = sizeof(struct CDianaOutputS);
attr.mq_curmsgs = 0;
fd = mq_open(INPUT_MQ_NAME, O_WRONLY | O_CREAT, 0777, &attr);

CDianaOutputS rOutputData;
mq_receive(fd, (char*) &rOutputData, sizeof(struct CDianaOutputS), 0);
```

Для приема данных, необходимо открыть очередь следующим образом:

```
#define NUMBER_OF_SECTION_SIGMA_B_HOT 2
#define NUMBER_OF_SECTION_SIGMA_B_COLD 3
#define NUMBER_OF_SECTION_SIGMA_B_ST 2
```

#define OUTPUT MQ NAME "/steamgen output mq s"

#define MAX MSG NUM 10

НВВАЭС Блок 1	Руководство системного программиста	Изм.:	Страница 13/17
DJIOK 1			

```
#define NUMBER_OF_OUTPUTS_SIGMA_B_HOT_TOTAL (NUMBER_OF_OUPUTS_SG * NUM-
BER OF SECTION SIGMA B HOT)
#define NUMBER OF OUTPUTS SIGMA B COLD TOTAL (NUMBER OF OUPUTS SG * NUM-
BER OF SECTION SIGMA B COLD)
struct CDianaOutputS {
       struct timespec m_CurrentTime;
       // Значение изгибных напряжений сечения горячей нитки ГЦТ
      double m_SigmaBHot[NUMBER_OF_OUTPUTS_SIGMA_B_HOT_TOTAL];
       // Значение размаха напряжений сечения горячей нитки ГЦТ
      double m_SigmaRangeHot[NUMBER_OF_OUTPUTS_SIGMA_B_HOT_TOTAL];
       // Сигнализация превышения размаха напряжений сечения горячей нитки ГЦТ
      unsigned int m_SigmaRangeAlarmHot[NUMBER_OF_OUTPUTS_SIGMA_B_HOT_TOTAL];
       // Значение изгибных напряжений сечения холодной нитки ГЦТ
      double m_SigmaBCold[NUMBER_OF_OUTPUTS_SIGMA_B_COLD_TOTAL];
       // Значение размаха напряжений сечения холодной нитки ГЦТ
      double m_SigmaRangeCold[NUMBER_OF_OUTPUTS_SIGMA_B_COLD_TOTAL];
       // Сигнализация превышения размаха напряжений сечения холодной нитки ГЦТ
      unsigned int m_SigmaRangeAlarmCold[NUMBER_OF_OUTPUTS_SIGMA_B_COLD_TOTAL];
       // Значение изгибных напряжений сечения СТ
      double m SigmaBST[NUMBER_OF_SECTION_SIGMA_B_ST];
       // Значение размаха напряжений сечения СТ
       double m SigmaRangeST[NUMBER OF SECTION SIGMA B ST];
       // Сигнализация превышения размаха напряжений сечения СТ
      unsigned int m SigmaRangeAlarmST[NUMBER OF SECTION SIGMA B ST];
};
```

4.1.3 ПО приема-передачи записывает на два СБ СКТП ПГ входные файлы протокола расчета, содержащий данные расчетов ПО «ДИАНА_S 1200» с периодом 1 сутки. Выходные файлы можно использовать для последующего анализа на ПК САКОР-392М.

НВВАЭС Блок 1 Руководство системного программиста Изм.: Страница 14/17

ПЕРЕЧЕНЬ СОКРАЩЕНИЙ

АКГА - аппаратура контроля гидроамортизаторов

АЭС - атомная электрическая станция

БЩУ - блочный щит управления ВК - вычислительный комплекс

ГА - гидроамортизатор

ГЦН - главный циркуляционный насос

ГЦТ - главный циркуляционный трубопровод

ИВС - информационная вычислительная система

ЛВС - локальная вычислительная сеть

НЖМД - накопитель на жестких магнитных дисках

ОЗУ - оперативное запоминающее устройство

ПГ - парогенератор

ПК - персональный компьютер

ПЛП - преобразователь линейных перемещений

ПО - программное обеспечение

РМ - рабочее место

РУ - реакторная установка

САКОР - система автоматизированного контроля остаточного ресурса

СБ - системный блок

СКТП - система контроля тепловых перемещений

СТ - соединительный трубопроводУВ - устройство вычислительное

УИИ - устройство информационное измерительное

НВВАЭС Блок 1	Руководство системного программиста	Изм.:	Страница 15/17

СПИСОК ЛИТЕРАТУРЫ

1 Решение № Р 1.2.2.15.004.0023-2021 от 15.01.2021 «О модернизации программнотехнического комплекса САКОР-392М энергоблоков № 1 и № 2 Нововоронежской АЭС-2». Концерн «Росэнергоатом», 2021 г.

НВВАЭС Блок 1	Руководство системного программиста	Изм.:	Страница 16/17

ССЫЛОЧНЫЕ НОРМАТИВНЫЕ ДОКУМЕНТЫ

Обозначение документа, на который дана ссылка	Номер раздела, подраздела, пункта, подпункта, перечисления, приложения, листа разрабатываемого документа, в котором дана ссылка
ГОСТ 19.505-79	1.1

НВВАЭС Блок 1	Руководство системного программиста	Изм.:	Страница 17/17	

	Лист регистрации изменений								
		Номера лис	стов (страни	щ)	Распо пистор		Вуоляний номов		
Изм.	измененных	замененных	новых	аннулированных	Всего листов (страниц) в документе	Номер доку- мента	Входящий номер сопроводительного документа и дата	Подпись	Дата